CS 61B Extra Practice Worksheet
Spring 2019 Discussion 2: Pointers Worksheet 2 SOlU.tiOHS

1 Pointer Practice

Draw the resulting box and pointer diagram for the L1 Singly Linked IntList after the following code is
executed:

1. IntLists
IntList L1

IntList.list(2,4,6,8);
IntList.list(1,3,5,7);
Ll.tail.tail.head = 5;

IntList L2

L2.tail.tail.tail = L1;
Ll.tail.tail.tail = L2;

Solution:

L1——

(A
-
(&)}
Qo
\

L2——| 1 | 3 | 5 7|/

2. IntLists
IntList Ll = IntList.list(7,15,22,31);

IntList L2 = Ll.tail.tail;
L2.tail.head = 13;
Ll.tail.tail.tail = L2;
IntList L3 = IntList.list (50);
L2.tail.tail = L3;

©Shubham Gupta CS 61B, Spring 2019

—_

Solution:

15

v

L1——| 7

A

22 13|

L2

L3—|50|

2 Destructivity

Will is working on his app, CalTransit (check it out on the Apple App Store!) and is writing a function that
given an Intlist, appends the length of the Intlist at the end of the list. Tiger thinks writing a non destructive
function will be a better idea. Tiger writes the following method:

public static IntList addLength (IntList 1i):
temp = i
temp.addLast (1i.length)
return temp

Assuming that the IntList class was already correctly defined, will this method execute as expected? If not,
how can it be fixed?

Solution: The method will not work as expected because it is destructive. By assigning temp = i, we simply
have temp point to the IntList that i is pointing to rather than making a deep copy of i. Thus, mutating temp
will also mutate i since they are pointing to the same list. In order to overcome this we would need to make
a deep copy of i and store that IntList in temp.

3 Skipping Stones

Write a function that takes in an IntList L, which must contain at least one element, and returns an IntList
with every odd indexed element removed. Try out both the destructive and nondestructive approaches.

1. Nondestructive
Solution:

public static IntList skipNondestructive (IntList L) {
IntList pointer = new IntList (L.head);;

IntList result = pointer;

©Shubham Gupta CS 61B, Spring 2019 2

while (L.tail != null && L.tail.tail != null) {
L = L.tail.tail;
pointer.tail = new IntList (L.head);
pointer = pointer.tail;

}

return result; }

2. Destructive
Solution:

public static IntList skipDestructive (IntList L) {

IntList pointer = L;

while (pointer.tail != null && pointer.tail.tail != null) {
pointer.tail = pointer.tail.tail ;
pointer = pointer.tail;

}

pointer.tail = null

return L;

©Shubham Gupta CS 61B, Spring 2019

	Pointer Practice
	Destructivity
	Skipping Stones

